SUMO: A small unmanned meteorological observer for atmospheric boundary layer research
نویسندگان
چکیده
A new system for atmospheric measurements in the lower troposphere has been developed and successfully tested. The presented Small Unmanned Meteorological Observer (SUMO) is based on a light-weighted commercially available model airplane, equipped with an autopilot and meteorological sensors for temperature, humidity and pressure. During the 5 week field campaign FLOHOF (Flow over and around Hofsjökull) in Central Iceland the system has been successfully tested in July/August 2007. Atmospheric profiles of temperature, humidity, wind speed and wind direction have been determined up to 3500 m above ground. In addition the applicability of SUMO for horizontal surveys up to 4 km away from the launch site has been approved. During a 3 week campaign on and around Spitsbergen in February/March 2008 the SUMO system also proved its functionality under harsh polar conditions, reaching altitudes above 1500 m at ground temperatures of -20 oC and wind speeds up to 15 m s. With its wingspan of 80 cm, its length of 75 cm and its weight of below 600 g, SUMO is easy to transport and operate even in remote areas. The direct material costs for one SUMO unit, including airplane, autopilot and sensors are below 1200 Euro. Assuming at least several tenths of flights for each airframe, SUMO provides a cost-efficient measurement system with a large potential to close the existing observational gap of reasonable atmospheric measurement systems in between meteorological masts/towers and radiosondes.
منابع مشابه
Meteorological Application of an Instrumented Unmanned Aircraft System: Structure Function Parameters and Sodar Comparison Student Team
The ability to obtain meteorological measurements in the planetary boundary layer for quantification of clear-air turbulence is investigated using the Small Multifunction Research and Teaching Sonde (SMARTSonde). With an instrumented unmanned aircraft, a series of flights were conducted in the spring of 2013 to obtain meteorological variables at Kessler Atmospheric and Ecological Field Station ...
متن کاملA Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I: Model Description and Testing
The modeling of the atmospheric boundary layer during convective conditions has long been a major source of uncertainty in the numerical modeling of meteorological conditions and air quality. Much of the difficulty stems from the large range of turbulent scales that are effective in the convective boundary layer (CBL). Both small-scale turbulence that is subgrid in most mesoscale grid models an...
متن کاملAn inverse-modelling approach for frequency response correction of capacitive humidity sensors in ABL research with small remotely piloted aircraft (RPA)
The measurement of water vapour concentration in the atmosphere is an ongoing challenge in environmental research. Satisfactory solutions exist for ground-based meteorological stations and measurements of mean values. However, carrying out advanced research of thermodynamic processes aloft as well, above the surface layer and especially in the atmospheric boundary layer (ABL), requires the reso...
متن کاملLarge-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer
Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...
متن کاملSensitivity of atmospheric dispersion simulations by HYSPLIT to the meteorological predictions from a meso-scale model
Mesoscale transport and dispersion of air pollutants from a few major point sources in the Mississippi Gulf coastal region is calculated using a coupled modeling system consisting of the atmospheric dynamical model WRF and the lagrangian particle model HYSPLIT. The sensitivity of the dispersion model results to the meteorological fields is studied by conducting an ensemble of simulations using ...
متن کامل